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Arguments

> arguments <- list(
variables = list(

primary = "ind", # a 0/1 indicator for the presence/absence of peat
spatialResolutionIn = 25, #meter
sub_area = 1,
year = 2002

),
model = list(

data_col = 14,
covar_start = 15,
covar_end = 64,
trendModelGLM = ind~veenstat+gtz3mw+reclam33+lgn32+relhoogte1000,
trendModelGLGM = ~veenstat+gtz3mw+reclam33+lgn32+relhoogte1000,
familyGLM = "binomial",
covarList = c("veenstat.txt","gtz3mw.txt","lgn32.txt","reclam33.txt","relhoogte1000.txt")

),
paths = list(

GRIDDATA_DIR = "D:/PROJECTEN/Veenactualisatie/covariates/Deelgebied1",
GISDATA_DIR = "D:/PROJECTEN/Veenactualisatie/spatial data/shapefiles",
WORKING_DIR = "D:/PROJECTEN/Veenactualisatie/Workingdir"

),
extent = list(

spatial = "Omtrek_deelgebied1",
temporal = c(start = "2002-01-01", stop = "2010-12-31")

),
maps = list(

sa = "Deelgebieden_dis", #study areas, i.e. peat soils in the Netherlands
sa_clip = "Deelgebieden_clip_dis", # peat areas in a rectangle surrounding study area 1
prov_nl = "Provinciegrenzen", # provincial boundaries
prov_sa = "Provinciegrenzen_DG1", # provincial boundaries in study area 1
rectangle = "Rectangle_DG1", # extent study area
soilmap = "Deelgebieden", # map of peat soils in the Netherlands
soilmap_sa = "Bodemkaart50_2006_veen_dis" # peat areas in study area 1

),
tables = list(

bis_data = "Boringen_gebied1_covariates.csv", # table with BIS data, including covariate values
legend = "legend_sm50k_dg1.csv", # color legend for the peat map units in study area 1
lookup_soil = "lookupTable_Soil.csv" # contains attributes that can be joined to the shape file

),
mcmc = list(

scalepar1 = 0.245,
scalepar2 = 0.25,
scalepar3 = 0.25,
thinning = 50,
burnin = 25000,
iterations = 150000,
tile_size = 2000

),
output = list(

filename = "result.asc",
spatialResolution = 100 #m

)
)
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1 Introduction

The aim is to create a map of the presence/absence of peat for the northern till plateau in the
Netherlands with the generalized linear geostatistical model (Diggle and Ribeiro Jr., 2007). This
map will be used for the spatial prediction of the thickness of the peat layer in a subsequent
modelling step. The map has a spatial resolution of 100 m × 100 m. The period of interest is
from 2002-01-01 to 2010-12-31

This document is created by means of ‘literate programming’ (Knuth, 1984), in particularly the
Sweave implementation (Leisch, 2002). This means that documentation and source code are
weaved to a single document. Literate programming improves communication between scientists
and is a huge step forwards in reproducible research.

2 Methodology

To create a map, we need to predict target variable y(x0) (in our case the presence or absence
of a peat layer in the soil profile) at unvisited locations x0. A presence/absence variable is a
categorical (binary) random variable with two outcomes: the target property is either present
or absent at a site. The nature of such variable makes that it cannot be modelled with stan-
dard geostatistical methods since these methods assume that the random variable is continuous,
Gaussian-distributed variables.

The generalized linear geostatistical model (GLGM) is central to the framework of model-based
geostatistics (Diggle et al., 1998) and can be used to model and predict non-Gaussian distributed
spatial data such as the presence/absence of peat in a soil profile. The GLGM has three compo-
nents (Diggle and Ribeiro Jr., 2007). The first component is the signal process S( · ), which is a
real-valued Gaussian spatial process with E[S(x)] = m, var[S(x)] = σ2, and correlation function
ρ(h). Here m is a spatial trend d(xi)

Tβ, where d(xi) is a vector of explanatory variables at
spatial location xi and β is a vector of trend coefficients. The second component is the measure-
ment process Y ( · ). Realizations of this process are the observed data y(x1), . . . , y(xn), which
are considered (indirect) measurements of the signal process. The Y (xi) are assumed to follow
a common distributional family (e.g. Bernoulli, Poisson, binomial or Gaussian), depending on
the mechanism that generated the data, and are mutually independent conditional on the signal.
The responses have conditional mean E[Y (xi)|S( · )]. The third component is the link function
g( · ), which links the conditional mean E[Y (xi)|S( · )] to the linear predictor S(xi). The GLGM
is thus defined as:

g(E[Y (xi)|S( · )]) = S(xi) = d(xi)
Tβ + U(xi) , (1)

where U(xi) is a second-order stationary, Gaussian distributed, spatial process with zero mean
and variance σ2.

A suitable candidate distribution to model the presence/absence of peat is the Bernoulli distribu-
tion. The conditional mean E[Y (xi)|S( · )] then represents the probability of peat being present
at location xi. A Bernoulli-distributed random variable Y can be modelled with a GLGM (Diggle
et al., 2002; Ben-Ahmed et al., 2010; Kempen et al., 2012) with a logit link function. The GLGM
of Eq. 1 can then be written as:

g(E[Y (xi)|S( · )]) = logit(πi) = log(
πi

1− πi
) = S(xi) = d(xi)

Tβ + U(xi) , (2)

version: 0.1-0 April 5, 2012
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where πi is the probability of the presence of peat at sampling location xi.

The observations y(xi) are obtained from the Dutch soil information system BIS. Each observa-
tion is checked for the presence of a peat layer in the soil profile. If peat is present at a sampling
site, then the observation observation gets value 1 and 0 otherwise.

Estimation of the model parameters of the GLGM as well as spatial prediction with this model
is complex. It involves repetitive use of Markov Chain Monte Carlo methods (Minasny et al.,
2011) to obtain simulations of the unobserved signal process S( · ) given the observations y(xi)
and Monte Carlo maximum likelihood estimation of the model parameters (Christensen, 2004).
We refer to Kempen et al. (2012) for an exposition of these methods in the context of digital soil
mapping with the GLGM.

3 Data preparation

3.1 Study area

The figure below shows the extent of the peat soils in the Netherlands, according to the national
soil map at scale 1:50 000. The area with peat soils has been divided into 6 sub-areas. Each
area will be updated individually. The area with deep peat soils in the northern and western
fen meadow landscape will not be updated. This study focusses on sub-area 1: the northern till
plateau. The sizes of the six mapping areas are given in the following Table.

area ha
Northern till plateau 67904
Northern fen peat area 83927
Cultivated peatlands 117420
Eastern and Soutern peat area 43246
Western fen peat area 14144
Western shallow peat area 38161
Outside update area 162253

version: 0.1-0 April 5, 2012
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Northern till plateau

Northern fen peat area

Cultivated peatlands

Eastern and Soutern peat area

Western fen peat area

Western shallow peat area

Outside update area

The 67904 ha study area comprises the peat soils of the glacial till plateau in the northern part
of the Netherlands. The till plateau is dissected by a system of brook valleys that are filled with
fen peat. Remains of once vast highmoor bogs on the plateau are now reclaimed for agriculture.
The figure below shows the 1:50 000 national soil map for the peat areas in study area and the
table reports the areas of the individual soil types. Deep peat soils (peat layer > 1.20 m thick)
cover 7600 ha, shallow peat soils (peat layer 0.40–1.20 m thick) 19615 ha, and peaty soils (peat
layer < 0.40 m thick) 40687 ha.
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3.2 Primary data

Field data on the presence/absence of peat were retrieved from the Dutch Soil Information System
BIS (de Vries et al., 2008). In addition, field data collected during the 2002–2004 assessment
of the status of peat soils in the Pleistocene part of the Netherlands were used (van Kekem
et al., 2005). These data were digitized from field maps for this project. Data from both sources
were combined into one database. A indicator variable was created, which takes value 1 if
peat is present in the soil profile (here we used a minimum thickness of 5 cm in order to be
classified as ‘present’), and 0 otherwise. Soil profile descriptions were not available for the peat
assessment data set. For these data points, presence/absence of peat was determined from the
soil classification code (STPC).

> d <- read.csv(
file = file.path(arguments$paths$WORKING_DIR, arguments$tables$bis_data),
header = TRUE,
as.is = TRUE

)
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soil ha description
AAP 754 Aangemaakte petgaten
ABv 39 Venige beekdalgronden
AP 127 Petgaten
aVc 2975 Madeveengronden op zeggeveen; rietzeggeveen of broekveen
AVo 1542 Veen in ontginning
aVp 265 Madeveengronden op zand met humuspodzol; beginnend ondieper dan 120 cm
aVz 10089 Madeveengronden op zand zonder humuspodzol; beginnend ondieper dan 120 cm
hVc 628 Koopveengronden op zeggeveen; rietzeggeveen of (mesotroof) broekveen
hVz 1914 Koopveengronden op zand; beginnend ondieper dan 120 cm
iVc 719 Veengronden met een veenkoloniaal dek op zeggeveen; rietzeggeveen of moerasbosveen
iVp 1446 Veengronden met een veenkoloniaal dek op zand met humuspodzol; beginnend ondieper dan 120 cm
iVs 18 Veengronden met een veenkoloniaal dek op veenmosveen
iVz 1431 Veengronden met een veenkoloniaal dek op zand zonder humuspodzol; beginnend ondieper dan 120 cm
iWp 6017 Moerige podzolgronden met een veenkoloniaal dek en een moerige tussenlaag
iWz 790 Moerige eerdgronden met een veenkoloniaal dek en een moerige tussenlaag op zand
kVc 23 Waardveengronden op zeggeveen; rietzeggeveen of (mesotroof) broekveen
kVz 49 Waardveengronden op zand; beginnend ondieper dan 120 cm
kWp 67 Moerige podzolgronden met een zavel- of een kleidek en een moerige tussenlaag
kWz 40 Moerige eerdgronden met een zavel- of kleidek en een moerige tussenlaag op zand
pVs 9 Weideveengronden op veenmosveen
pVz 18 Weideveengronden op zand; beginnend ondieper dan 120 cm
Vc 516 Vlierveengronden op zeggeveen; rietzeggeveen of (mesotroof) broekveen
Vp 257 Vlierveengronden op zand met humuspodzol; beginnend ondieper dan 120 cm
Vs 417 Vlierveengronden op veenmosveen
vWp 5710 Moerige podzolgronden met een moerige bovengrond
vWz 10154 Moerige eerdgronden met een moerige bovengrond op zand
Vz 1234 Vlierveengronden op zand zonder humuspodzol; beginnend ondieper dan 120 cm
zVc 505 Meerveengronden op zeggeveen. rietzeggeveen of broekveen
zVp 719 Meerveengronden op zand met humuspodzol; beginnend ondieper dan 120 cm
zVs 244 Meerveengronden op veenmosveen
zVz 1306 Meerveengronden op zand zonder humuspodzol; beginnend ondieper dan 120 cm
zWp 15152 Moerige podzolgronden met een humushoudend zanddek en een moerige tussenlaag
zWz 2714 Moerige eerdgronden met een zanddek en een moerige tussenlaag op zand

From this dataset, the observation sites located in sub-area 1 were selected. Next, point obser-
vations dating before 2002 were excluded, as well as observations collected during 1:10 000 soil
surveys, and observations for which the presence of peat could not be determined because of
incomplete soil profile data. Finally, point observations which lacked values for the explanatory
variables were also excluded.

> # select data
> d <- subset(x = d,

subset = (dg == arguments$variables$sub_area & jaar >= arguments$variables$year
& bron!="BPKDETAIL")

)
> # exclude indicators with value NA (presence/absence of peat is unknown)
> d <- d[!is.na(d[,arguments$variables$primary]),]
> # remove data points with NA for explanatory variables
> d <- d[!is.na(d$lgn5),]

The result is a data.frame consisting of 3306 rows. A snippet of this data.frame is given below.

The figure below shows the locations of the point observations in sub-area 1 and the presence
(1) or absence (0) of peat. A peat layer is present at 2851 locations and absent at 455 locations.

version: 0.1-0 April 5, 2012
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id x y bron jaar stpc begin eind dikte bod50 hoofd dg cens ind
553 222263 519530 BPK 2011 4k 60 85 25 zW M 1 0 1
871 223812 521097 BPK 2011 2m 30 45 15 zW W 1 0 1
1058 221400 521760 BPK 2007 z4d 15 20 5 zW W 1 0 1
1243 220232 522503 BPK 2011 4h 50 110 60 zW M 1 0 1
1320 218552 522835 BPK 2008 1t 35 80 45 zV V 1 0 1
: : : : : : : : : : : : :
2495 215453 580266 vc 2004 1h 0 90 90 aV V 1 0 1
2496 201100 580478 vc 2004 2n 0 20 20 aV W 1 1 1
2497 200919 580651 vc 2004 2n 0 20 20 aV W 1 1 1
2498 218058 580864 vc 2004 1s 30 110 110 kV V 1 1 1
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The figure below shows the main observed soil group (peat, peaty or mineral) at the sampling
sites.
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The point data of the 2002-2004 peat soil assessment were not used for the calibration of the
prediction model for mapping the presence/absence of peat (section 4). These data were, however,
used for the application of the prediction model (section 5).

3.3 Explanatory variables

A total of 50 data layers with environmental explanatory variables were derived from maps of soil,
groundwater, (historic) land cover, elevation, and geomorphology, and stored in a geodatabase.
These data layers may assist spatial prediction of the presence/absence of the peat layer at
unvisited locations. All data layers were in raster format with 25-m spatial resolution.

Seven of these variables were derived from the national 1:50 000 soil map, representing: peat
thickness class (3), topsoil lithology (2), peat type, and peat status (van Kekem et al., 2005).
Eight variables were derived from the MIPWA groundwater maps: mean highest water table (2),
mean lowest water table (2), drainage condition, summer drainage condition, winter drainage
condition, and seepage. A map representing oxidiation sensitivity was derived from peat type
and groundwater table class maps according to (Finke et al., 1996). Nine maps representing land
cover class were derived from the LGN3+, LGN4 and LGN5 land cover maps (Hazeu, 2005), each
with a different number and combination of land cover classes. Six maps representing reclamation
age were derived from historic land cover layers HGN1900 (Knol et al., 2004), Bosstatistiek1940
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(Clement and Kooistra, 2003), HGN1960, HGN1980, HGN1990 (Knol et al., 2003) and LGN5.
Ten maps respresenting relative elevation were derived from the 25-m digital elevation model1

(DEM). Relative elevation captures local relief and is computed by subtracting the local mean
elevation (determined within circles with 250 m, 500 m, 750 m, and 1000 m search radii). The
relative elevation layer based on the 750-m search radius was reclassified into layers with two,
three and four classes. In addition, the DEM was used, in combination with a layer with historic
elevation —constructed by inverse distance weighted interpolation of a network of elevation mea-
surements from the 1960s (1.2 ha−1)— to obtain a layer representing elevation change. Elevation
change is informative because peat excavation and decomposition lower the surface (Hoogland
et al., 2012). The layer was subsequently reclassified into layers with two, three and five classes.
The elevation-change layer was also used to determine the mean elevation change for each of the
delineations of the 1:50 000 soil map for the peat areas, yielding an additional four data layers.
Finally, a map representing geomorphology (Koomen and Maas, 2004) was used to determine
the main landform type for each of the soil map delineations.

4 Modelling

4.1 Model selection

A manual step-wise approach was used to select explanatory variables for the trend component
of the GLGM. A univariate generalized linear model (GLM; i.e. a non-spatial GLGM) with
a logit link function was fitted for each variable to assess the strength of the correlation with
the target variable; the presence/absence indicator. Because explanatory variables with each
variable group (soil, groundwater, land cover, reclamation age, relative elevation and elevation
change) are strongly correlated, only one variable was selected from each group on basis of the
Akaike Information Criterion (AIC) (Webster and McBratney, 1989) for further analysis. Next,
the selected variables were sequentially added to a multivariate model in order of the strength of
the univariate correlation. Again, the AIC was used to select the most parsimonious multivariate
models.

A summary of the selected trend model is given below. Five explanatory variables were selected:
peat status (‘veenstat’, 4 classes: (1) deformed peat soil, (2) non-deformed peat soil, (3) peaty
soil, (4) no information on peat status); summer drainage condition (‘gtz3mw’, 3 classes: (1)
good, (2) moderate, (3) poor); reclamation age (‘reclam33’, 3 classes: (1) > 70 years, (2) 40–70
years, (3) < 40 years); land cover (‘lgn32’, 3 classes: (1) grassland, (2) cropland, (3) natural
vegetation); and relative elevation based on a 1 000 m search radius (‘relhoogte1000’). All model
coefficients except one, were significant at the p = 0.05-level.

> glmPeat <- glm(
formula = arguments$model$trendModelGLM,
family = arguments$model$familyGLM,
data = d

)
> summary(glmPeat)

Call:
glm(formula = arguments$model$trendModelGLM, family = arguments$model$familyGLM,

data = d)

1www.ahn.nl
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Deviance Residuals:
Min 1Q Median 3Q Max

-2.4281 -0.8032 0.3399 0.7027 2.1076

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.480907 0.296339 4.997 5.81e-07 ***
veenstat2 0.764698 0.365279 2.093 0.036308 *
veenstat3 -0.726507 0.272700 -2.664 0.007719 **
veenstat4 2.621892 1.048371 2.501 0.012387 *
gtz3mw2 -1.052415 0.223060 -4.718 2.38e-06 ***
gtz3mw3 -1.627509 0.277716 -5.860 4.62e-09 ***
reclam332 0.554475 0.315663 1.757 0.078996 .
reclam333 2.093640 0.508777 4.115 3.87e-05 ***
lgn322 -0.717223 0.203285 -3.528 0.000418 ***
lgn323 -0.781394 0.383027 -2.040 0.041345 *
relhoogte1000 -0.007219 0.001968 -3.668 0.000245 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1053.78 on 814 degrees of freedom
Residual deviance: 755.16 on 804 degrees of freedom
AIC: 777.16

Number of Fisher Scoring iterations: 6

An analysis of deviance assesses whether an individual variable makes a significant contribution
to the model. This test is also known as the likelihood ratio test (Hosmer and Lemeshow, 2000).
The likelihood ratio statistic measures the reduction in deviance that results from including an
explanatory variable (for a linear model the deviance is equal to the sum of squares). Under
the null hypothesis that a variable does not make a significant contribution the likelihood ratio
statistic will be chi-square distributed. The analysis of deviance shows that each variable makes
a significant contribution to the model. The variable ‘peat status’ contributes most 57% to the
reduction in deviance and is thus the strongest explanatory variable.

> anova(glmPeat, test="Chi")

Analysis of Deviance Table

Model: binomial, link: logit

Response: ind

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 814 1053.78
veenstat 3 171.155 811 882.63 < 2.2e-16 ***
gtz3mw 2 74.069 809 808.56 < 2.2e-16 ***
reclam33 2 25.170 807 783.39 3.422e-06 ***
lgn32 2 13.876 805 769.51 0.0009701 ***
relhoogte1000 1 14.355 804 755.16 0.0001514 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The fitted values (probability of peat being present at a data point) and the deviance residuals
are added to the data.frame containing the data points.
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> # fitted values
> d$fitted<-glmPeat$fitted.values
> # deviance residuals
> d$r <- resid(glmPeat, type = "deviance")

The estimated model coefficients are stored in a separate object and will be used later on.

> betas<-as.numeric(glmPeat$coefficients)

A plot of the deviance residuals at the data points is shown below.
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4.2 Variography

The sample semivariogram of the deviance residuals r will be estimated by means of the gstat-
package (Pebesma, 2004).

> coordinates(d) <- ~x+y
> #remove duplicate locations
> zerodist(d, zero = 0.0, unique.ID = FALSE)
> d<-remove.duplicates(d, zero = 0.0, remove.second = TRUE)
> # fit sample semivariogram
> sampleSemivariogram <- variogram (r ~ 1, data = d, width = 250, cutoff = 20000)
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The sample semivariogram is given in the figure below. The semivariances are given by numbers
indicating the number of point pairs (×0.01) used to estimate the semivariances. The semivari-
ances are somewhat increasing, also for large lag distances h, indicating the presence of a weak
trend.
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To obtain semivariances for lag distances not available in the data set, a model has to be fitted to
the sample semivariogram. Models have to be selected with care since not all models guarantee
a unique solution of the kriging system. See Goovaerts (1997) or the gstat-documentation for a
list of permissible models. In this report, an exponential model has been used to fit the data.

> semivariogramModel <- vgm(
psill = 0.3,
model = "Exp",
range = 5000,
nugget = 0.6

)
> semivariogramModel <- fit.variogram(sampleSemivariogram, model = semivariogramModel)

The semivariogram model has been fitted by means of weighted ordinary least squares, with
weights proportional to the number of point pairs and inversely proportional to the squared lag
distance (default setting). The estimated parameters of the exponential model are given in the
table below.

model psill range kappa ang1 ang2 ang3 anis1 anis2
Nug 0.66 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Exp 0.21 499.42 0.50 0.00 0.00 0.00 1.00 1.00

The estimated semivariogram parameters, the partial sill, nugget and range, are used as initial
values for parameter estimation by residual maximum likelihood (REML) (Lark and Cullis, 2004).
Estimation by REML has the advantage that full use is made of the available data, i.e. it is
not necessary to group the data by lag distance in order to estimate the semivariogram model
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such as with weighted ordinary least squares. Furthermore, it is a more appropriate method for
parameter inference from spatial data that are obtained by a non-design-based sampling strategy.
REML estimation was done by means of the geoR-package (Ribeiro Jr. and Diggle, 2001).

First, the data.frame containing the soil point observations must be converted to class geodata.
This is done twice. Once to store the residuals, and once to store the target variable that indicates
presence or absence of peat in the soil profile.

> dGDresid<-as.geodata(
obj = as.data.frame(d),
header = TRUE,
coords.col = 2:3,
data.col = arguments$model$covar_end+2,
data.names = NULL,
covar.col = arguments$model$covar_start:arguments$model$covar_end

)
> dGDind<-as.geodata(

obj = as.data.frame(d),
header = TRUE,
coords.col = 2:3,
data.col = arguments$model$data_col,
data.names = NULL,
covar.col = arguments$model$covar_start:arguments$model$covar_end

)
> dGDind$data<-as.numeric(dGDind$data)

Next, the variogram parameters are estimated by REML with the likfit function.

> vgmREML <- likfit(
geodata = dGDresid,
trend="cte",
cov.model="exponential",
ini.cov.pars=c(semivariogramModel[2,2], semivariogramModel[2,3]),
nugget=semivariogramModel[1,2],
lik.method="REML"

)

The REML estimates of the variogram parameters are given below. The parameter τ2 (tausq)
is the nugget, σ2 (sigmasq) is the partial sill, and φ (phi) is the range.

> vgmREML

likfit: estimated model parameters:
beta tausq sigmasq phi

" 0.1054" " 0.6795" " 0.2827" "746.0299"
Practical Range with cor=0.05 for asymptotic range: 2234.906

likfit: maximised log-likelihood = -1106

The figure below shows the sample semivariogram (dots), the variogram model estimated by
weighted ordinary least squares (dashed line) and the variogram model estimated by REML
(solid line).
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4.3 MCMC simulation

So far, we have selected a set of explanatory variables for the trend part of the prediction model
(d(xi) in Eq. 1), and we obtained estimates of the model coefficients of these parameters with
the GLM (β in Eq. 1), and estimates of the variance parameters of the spatial component of the
prediction model (U(xi) in Eq. 1). The latter were estimated by REML, using initial values as
input that were estimated by weighted ordinary least squares from the sample semivariogram.

Now the estimated model coefficients and variance parameters are used to obtain values of the
unobserved Gaussian spatial process S( · ), from which our observations yi (presence or absence of
the peat layer) are realizations. For this purpose we use a technique called Markov Chain Monte
Carlo (MCMC) simulation. MCMC is a general-purpose technique for simulating from complex
probability distributions. It constructs a Markov chain, which has the desired distribution as
its equilibrium distribution. Simulation from the chain after equilibrium has been attained,
yields a sample from the target distribution, which is in our case the distribution of S( · ) at an
observation site i. Here MCMC is used to simulate samples (realizations) of Si conditional on
the observations yi. MCMC simulation will be done with the geoRglm-package (Christensen and
Ribeiro Jr., 2002).

The first step in MCMC simulation is to define the options for the MCMC algorithm. This is
done with the mcmc.control-function. The S.scale parameter scales the proposal distribution
and affects the fraction of proposals that are accepted. This fraction should be around 0.60,
which is considered an optimal value for the simulation algorithm that is used (Christensen
and Ribeiro Jr., 2002). The S.scale parameter is determined by trial-and-error. The parameter
n.iter indicates the length of the chain, i.e. number of iterations (or simulations of S( · )).
The parameter thin indicates the sub-sampling rate. A chain is typically thinned to reduce
autocorrelation between simulations since simulations should be mutually independent. Finally,
the parameter burn.in is the length of the burn-in period. This is the number of iterations until
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the chain approaches equilibrium. Burn-in samples are discarded.

Here the value 0.245 is taken for S.scale. The burn-in length is 25000 iterations and the chain
length is 150000. We sample and store every 50th interation, giving us 3000 simulations of S( · )
at each sampling location xi.

> mcmcSet <- mcmc.control(
S.scale = arguments$mcmc$scalepar1,
n.iter = arguments$mcmc$iterations,
thin = arguments$mcmc$thinning,
burn.in = arguments$mcmc$burnin

)

The second step is the specification of the GLGM in form of a list. This specification includes
the model family, the trend model, the theoretical semivariogram model, and initial values of the
model parameters (the coefficients and variance parameters).

> glgm <- list(
family=arguments$model$familyGLM,
trend = trend.spatial(trend = arguments$model$trendModelGLGM, geodata = dGDind),
cov.model="exponential",
cov.pars=c(vgmREML$sigmasq, vgmREML$phi),
nugget = vgmREML$tausq,
beta=betas

)

The third step is the simulation of the si at the sampling locations xi. This is done with the
glsm.mcmc-function.

> simFtilde <- glsm.mcmc(
geodata = dGDind,
units.m = "default",
model = glgm,
mcmc.input = mcmcSet,
messages=TRUE

)

Like mentioned before, it is assumed that after a burn-in period the Markov chain approaches
or converges to the equilibrium distribution. To make sure the chain has indeed reached its
equilibrium, we assess the convergence of the chain using a trace plot and the Geweke’s statistic
(Geweke, 1992). Geweke’s statistic compares the means of the simulated values for two non-
overlapping parts of the Markov chain. This statistic is a Z-score and follows a standard normal
distribution, N(0, 1), under the null hypothesis (there is no difference between the means for two
parts of the Markov chain) is true. If a chain has converged, then the mean (and variance) of
the simulated values from the first part of the chain will be equal to the mean from a later part
of the chain. Large absolute values of the statistic indicate rejection of the null-hypothesis, and
thus non-convergence.

In addition, we assess the mixing and autocorrelation of the chain. A chain is considered ‘well
mixing’ if it fully explores the parameter space (in our case the space with all possible values for
S( · )), whereas a ‘poorly mixing’ chain remains in small regions of the parameter space. Mixing
can also be judged from a trace plot. An autocorrelation plot informs us if the simulations are
mutually independent. The convergence, mixing and autocorrelation properties are assessed with
the coda-package. Below, plots are displayed for two randomly chosen sampling locations.
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> chainConv1 <- create.mcmc.coda(
x = simFtilde$simulations[round(runif(1, min = 1, max = nrow(simFtilde$simulations)),0),],
mcmc.input = list(S.scale=arguments$mcmc$scalepar1,thin=1)

)
> geweke.diag(chainConv1)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
0.09195
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> chainConv2 <- create.mcmc.coda(
x = simFtilde$simulations[round(runif(1, min = 1, max = nrow(simFtilde$simulations)),0),],
mcmc.input = list(S.scale=arguments$mcmc$scalepar1,thin=1)
)

> geweke.diag(chainConv2)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
0.02139
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The top-left plots are the trace plots. These plots show the iterations versus the sampled values
of si, after the burn-in period. The centre of the first chain is around the value -0.1 with small
fluctuations, whereas the second chain is around the value 0.1. Both plots indicate that the
chain could have reached the equilibrium distribution, i.e., the chain has converged. This is
confirmed by Geweke’s statistics. The Geweke’s Z-scores are much smaller than ±1.96; the 95%
confidence interval for the standard normal distribution N(0, 1). Furthermore, the Geweke’s
plots (bottom-right) show that the Z-scores nearly fall all within the 95% confidence interval,
indicated by the two horizontal lines. These plots show what happens to the Z-scores when
successively larger numbers of iterations are discarded from the beginning of the chain. The
mixing of the chain seems quite good. The chain traverses the distribution quickly and visits
regions in the parameter space with low density. The autocorrelation plots (top-right) show that
the MCMC samples are mutually uncorrelated. This means that the thinning of the chains was
sufficient. The density plots (bottom-left) show that the simulated values of si approximately
follow a normal distribution.

4.4 Monte Carlo maximum likelihood estimation

Next, the simulated si are used to estimate the model parameters by maximum likelihood. If
this is repeated a sufficiently large number of times (i.e., for each MCMC sample) the proper
conditional distributions of the signal and its parameters are reconstructed. This method for
parameter estimation is referred to as Monte Carlo (MC) maximum likelihood (Christensen,
2004).

> mcmlPrep <- prepare.likfit.glsm(simFtilde)
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> mcmlEstimation <- likfit.glsm(
mcmc.obj = mcmlPrep,
trend = trend.spatial(trend = arguments$model$trendModelGLGM, geodata = dGDind),
cov.model = "exponential",
ini.phi = vgmREML$phi,
nugget.rel = (vgmREML$tausq/vgmREML$sigmasq),
fix.nugget.rel = FALSE,
messages = FALSE

)
> mcmlEstimation

likfit.glsm: estimated model parameters:
beta0 beta1 beta2 beta3 beta4 beta5 beta6

" 1.6275" " 0.7294" " -0.9986" " 2.5287" " -1.3090" " -1.7981" " 0.4259"
beta7 beta8 beta9 beta10 sigmasq phi tausq.rel

" 2.4827" " -0.4589" " -0.7444" " -0.0071" " 0.1897" "719.5982" " 3.2323"

likfit.glsm : maximised log-likelihood = 14.24

Christensen (2004) recommends to repeat parameter estimation, where the new initial parameter
values are chosen as the values maximising the We follow this recommendation here. We repeat
MCMC simulation of S( · ) using the MC maximum likelihood estimates of the model parameters
and then use the new simulated values to repeat MC maximum likelihood estimation of the model
parameters. This gives the following estimates of the model parameters.

likfit.glsm: estimated model parameters:
beta0 beta1 beta2 beta3 beta4 beta5 beta6

" 1.8412" " 0.7953" " -0.9194" " 2.5234" " -1.4041" " -2.1088" " 0.8971"
beta7 beta8 beta9 beta10 sigmasq phi tausq.rel

" 2.7517" " -0.5380" " -0.6921" " -0.0058" " 0.2762" "571.9009" " 1.9054"

likfit.glsm : maximised log-likelihood = 13.05

Now that we have obtained the final estimates of the model parameters, we use these once more
to simulate values of S( · ) at the sampling sites using MCMC simulation. Now we do not only
simulate at the sampling sites that were used to calibrate the prediction model, but also at the
sites that were not used for model calibration (these are the sampling sites of the 2002-2004
peat soil assessment). Again, the point data set is read and processed as before with the only
difference that the peat assessment points are not excluded, and a geodata object is created that
is used for MCMC simulation.

> mcmcSet <- mcmc.control(
S.scale = arguments$mcmc$scalepar3,
thin = arguments$mcmc$thinning,
n.iter = arguments$mcmc$iterations,
burn.in = arguments$mcmc$burnin

)
> set.seed(16850321)
> simF<-glsm.mcmc(

geodata = dGDind,
units.m = "default",
model = mcmlEstimation2,
mcmc.input = mcmcSet,
messages = FALSE

)
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5 Mapping the presence/absence of peat

Our aim is to map the presence/absence of peat in the soil profile. This is done by mapping the
peat occurrence probability. The mapped probabilities are used to separate the peat and no-peat
areas using a probability cut-off value. This value is determined such as suggested by ?.

5.1 Geostatistical interpolation

Spatial prediction of the probabilities is done via prediction of S( · ) (Eq. 2). We have 3000
MCMC simulations of S( · ) at each sampling site xi. S( · ) is predicted at prediction locations
x0 by kriging a single MCMC sample. Repeating this for each sample results in 3000 surfaces
(maps) with predictions of S( · ). Each of these surfaces is then back-transformed to the original
scale to obtain the probability maps. Finally, the 3000 probability maps are averaged.

The signal process S( · ) will be interpolated to the nodes of a fine prediction grid. The spatial
resolution of this grid is 100 m × 100 m. The prediction grid will be constructed by overlaying
the soil map of the peat areas of study area 1 with a grid of the requested resolution.

> p <- spsample(
soilMap,
cellsize = arguments$output$spatialResolution,
type = "regular",
offset = c(0.5, 0.5)

)

To predict S( · ) we need the values of the explanatory variables at the nodes of the prediction
grid (i.e., the points at which S( · ) is predicted). First, a data.frame is created that can store
the explanatory variable values.

> expVarPred <- with(
as(p, "data.frame"),
data.frame(

id = seq(1,nrow(as.data.frame(p)),1),
x = x1,
y = x2

)
)

Next, the data layers with the explanatory variables are read. Overlaying the prediction points
with the explanatory data layers gives the values of the explanatory variables at the prediction
points.

> for(i in 1:length(arguments$model$covarList)) {
dum <- readGDAL(

fname = file.path(arguments$paths$GRIDDATA_DIR, arguments$model$covarList[i])
)
o<-overlay(x=dum, y=p)
names(o) <- substring(

text=arguments$model$covarList[i],
first=1, last=nchar(arguments$model$covarList[i])-4

)
expVarPred<-cbind(expVarPred,o@data)

}
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The object class of categorical explanatory variables is changed to factor, and prediction points
that do not have a value for the explanatory variables are discarded.

> for(i in 4:ncol(expVarPred)){
if (class(expVarPred[,i])=="integer") {expVarPred[,i]<-as.factor(expVarPred[,i])}
}
> expVarPred <- expVarPred[!is.na(expVarPred[,4]),]

Spatial prediction with the GLGM is computationally intensive, and has to be done in steps
to avoid memory problems. Therefore, the prediction area is split into tiles comprising 2000
prediction locations. Prediction is then for each tile individually. We must therefore first define
the tile size and determine the number of tiles needed to cover the prediction grid p. Also, three
objects have to be created in which the results of the predictions for the individual tiles can be
compiled.

> # create dataframe with prediction locations
> predLocations <- data.frame(

x=expVarPred$x,
y=expVarPred$y

)
> # define tileSize and determine the number of tiles
> tileSize <- arguments$mcmc$tile_size
> nTiles <- ceiling(nrow(predLocations)/tileSize)
> # create objects to compile predictions for the individual tiles
> pred <- NULL
> var <- NULL
> mc <- NULL

Once the tile size and the number of tiles are determined, kriging has to be applied to interpolate
the signal S( · ) to the nodes of the prediction grid p. This is done by means of the glsm.krige

of the geoRglm-package.

> for(i in 1:nTiles){

# select a tile
if(tileSize*i<nrow(predLocations)){t<-predLocations[(tileSize*i-tileSize+1):(tileSize*i),]}else

{t<-predLocations[(tileSize*i-tileSize+1):nrow(predLocations),]}

if(tileSize*i<nrow(expVarPred)){z<-expVarPred[(tileSize*i-tileSize+1):(tileSize*i),]} else
{z<-expVarPred[(tileSize*i-tileSize+1):nrow(expVarPred),]}

# prepare geodata object with explanatory variables
predGD <- as.geodata(
obj = z,
coords.col = 2:3,
data.col = NULL,
data.names = NULL,
covar.col=4:ncol(z)

)

# kriging
predGLGM <- glsm.krige(
mcmc.output = simF,
locations = t,
trend.l = trend.spatial(trend=arguments$model$trendModelGLGM, geodata=predGD),
output = output.glm.control(sim.predict = FALSE)

)

# compile predictions
pred <- rbind(pred, data.frame(as.vector(predGLGM$predict)))
var <- rbind(var, data.frame(as.vector(predGLGM$krige.var)))
mc <- rbind(mc, data.frame(as.vector(predGLGM$mcmc.error)))

}
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A data.frame is created in which the predicted probabilities are stored. A snippet of this
data.frame is given below.

> predictions <- data.frame(
id = expVarPred$id,
x = expVarPred$x,
y = expVarPred$y,
pred = pred[,1],
var = var[,1],
mcmcError = mc[,1]

)

id x y pred var mcmcError

1 222953.625000001 517479.3751 0.342999678351821 0.0388220128652348 0.00018640503252807
2 223053.625000001 517479.3751 0.352176465174268 0.0399755164824695 0.000203270691242147
3 222853.625000001 517579.3751 0.946448207656912 0.00155569078868817 5.1438805032336e-05
4 222953.625000001 517579.3751 0.958298178170104 0.000957221058476928 4.50461462048326e-05
5 223153.625000001 517579.3751 0.320859775619709 0.0357902750701179 0.000248244994185856
: : : : : :
67967 216453.625000001 580879.3751 0.695730639310843 0.0335088603005955 6.76502439678985e-05
67968 216553.625000001 580879.3751 0.414714246952813 0.0465887032011928 7.87684014943818e-05
67970 217953.625000001 580879.3751 0.93324368693945 0.00237338215031552 2.60132030815978e-05
67971 218053.625000001 580879.3751 0.934230891719368 0.00230620298154478 2.39093679535488e-05

5.2 Selecting the probability cut-off value

The probability cut-off value that is used to separate the peat and no-peat areas is determined
by validation, using the actual point observations on the presence/absence of peat. A prediction
site where the probability exceeds the cut-off value is assigned a ‘1’ (peat), whereas a prediction
site where the probability is lower than the cut-off values is assigned a ‘0’ (no peat). Here the
approach suggested by ? is followed. These authors define three validation measures that are
determined from a contingency table, as shown below.

Observed no peat Observed peat
Predicted no peat N1 N2
Predicted peat N3 N4

In this table N1 and N4 represent the number of correct predictions, and N2 and N3 represent
the incorrect predictions. ? define a goodness score S4, which is the number of correctly predicted
minus the number of incorrectly predicted over the total number of data points:

S =
N1 +N4−N2−N3

N1 +N2 +N3 +N4
. (3)

S varies between -1 and 1; higher scores indicate more correct predictions. In addition, ? define
two bias measures B1 and B2:
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B1 =
N1 +N2

N1 +N3
, (4)

B2 =
N3 +N4

N2 +N4
, (5)

B1 is the number of locations where ‘no peat’ is predicted divided by the number of locations
where ‘no peat’ is observed. B2 is a similar measure, but then for the ‘peat’ category. When the
bias equals 1, there is no bias. When the bias is smaller than 1, the peat or no peat areas are
underrepresented, while values larger than 1 indicate overrepresentation.

To compute the validation measures, the predicted probabilities at the data points are extracted
from the probability grid.

> # make data.frame with GLGM predictions spatial
> coordinates(predictions) <- ~x+y
> gridded(predictions) <- TRUE
> fullgrid(predictions) <- TRUE
> # overlay
> o <- as.data.frame(overlay(x=predictions, y=d))
> # combine data into one data.frame
> validation <- cbind(as.data.frame(d),o)
> # exclude observation points with NA
> validation <- validation[!is.na(validation$pred),]

A function is defined to compute the validation measures from the data for different cut-off
values. After these values are evaluated, a probability cut-off value is selected.

> probThres <- function(t,validation){

# define series of threshold values (0.10-0.90)
threshold <- seq(

from = 0.10,
to = 0.90,
by = 0.05

)

# create objects to store values of threshold measures
a<-NULL
s<-NULL
b1<-NULL
b2<-NULL

# evaluate threshold measures for different thresholds
for(i in 1:length(threshold)){

# determine presence/absence of peat
validation$peat <- ifelse(

test = validation[,prob]<threshold[i],
yes = 0,
no = 1

)

# determine prediction error
validation$error <- ifelse(

test = (validation$ind==validation$peat),
yes = 1,
no = 0

)

# cross-table
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t <- table(validation$peat,validation$ind)

# selection criteria
a <- rbind(a,((t[1,1]+t[2,2])/sum(t))) # accuracy
s <- rbind(s,((t[1,1]+t[2,2]-t[1,2]-t[2,1])/sum(t))) # goodness
b1 <- rbind(b1,((t[1,1]+t[1,2])/sum(t[1,1]+t[2,1]))) # bias for no peat
b2 <- rbind(b2,((t[2,1]+t[2,2])/sum(t[1,2]+t[2,2]))) # bias for peat

}

# compile threshold measures in one data.frame
x <- data.frame(

cutOff = threshold,
accuracy = round(a,3),
goodness = round(s,3),
bias1 = round(b1,2),
bias2 = round(b2,2),
biasdif = abs(round(b1,2)-round(b2,2))

)

# determine maximum goodness and minimum bias
x$gInd<-ifelse(

test = x$goodness==max(x$goodness),
yes = 1,
no = 0

)

x$bInd<-ifelse(
test = x$biasdif==min(x$biasdif),
yes = 1,
no = 0

)

# determine probability threshold on basis of goodness and bias
y<-x
y$bInd<-ifelse(

test = y$biasdif<0.15,
yes = 1,
no = 0

)
z<-y[y$bInd==1,]
z$gInd<-ifelse(

test = z$goodness==max(z$goodness),
yes = 1,
no = 0

)
z<-z[z$gInd==1,]

return(list(
x,
x[x$gInd==1,][,2], # maximum accuracy
x[x$gInd==1,][,1], # threshold for maximum accuracy
x[x$bInd==1,][,4], # minimum for minimum bias1
x[x$bInd==1,][,5], # minimum for minimum bias2
x[x$bInd==1,][,1], # threshold for minimum accuracy
z[,1], # threshold
z[,2], # accuracy
z[,4], # bias1
z[,5] # bias2
)

)
}

The cut-off function is applied to the ‘validation’ data.frame that stores the predicted proba-
bilities at the data points.

> prob<-"pred"
> ptGLGM<-probThres(prob,validation)

The table below shows the validation measures for a set of cut-off probabilities.
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cutOff accuracy goodness bias1 bias2

0.10 0.67 0.33 0.02 1.51
0.15 0.69 0.38 0.09 1.47
0.20 0.71 0.43 0.20 1.41
0.25 0.72 0.45 0.27 1.38
0.30 0.73 0.47 0.37 1.33
0.35 0.77 0.54 0.61 1.20
0.40 0.77 0.54 0.74 1.13
0.45 0.78 0.56 0.88 1.06
0.50 0.77 0.54 0.97 1.01
0.55 0.77 0.53 1.05 0.97
0.60 0.77 0.54 1.15 0.92
0.65 0.76 0.53 1.25 0.87
0.70 0.77 0.53 1.36 0.81
0.75 0.74 0.48 1.54 0.72
0.80 0.70 0.39 1.72 0.63
0.85 0.66 0.31 1.87 0.55
0.90 0.60 0.20 2.08 0.44

The goodness value is largest for a cut-off value 0.45, whereas the bias is smallest for cut-off value
0.5. To select the ‘optimal’ cut-off value we decided that the absolute difference in bias measures
B1 and B2 must be smaller than 0.15. Within this range, the cut-off value is selected for which
the goodness is largest. In our case the selected cut-off value is 0.5.

The calibration accuracy of the predicted soil map is 0.779 for cut-off value 0.45. This means that
the model correctly predicts the occurence of peat at 77.9 of the data points. For the selected
cut-off, the calibration accuracy is 0.772. Note that map accuracy computed from independent
data, i.e. data that are not used to calibrate the prediction model, typically is smaller than the
calibration accuracy.

With the selected cut-off value, the peat category at the data points can be determined.

> validation$peat <- ifelse(
test = validation$pred<ptGLGM[[7]],
yes = 0,
no = 1

)

Observed no peat Observed peat

169 83
90 417

The class representation, which is the proportion of the observations for which peat occurence is
correctly predicted, is for ‘no peat’ 0.652509652509653, and for ‘peat’ 0.834.

5.3 Soil maps

The map with the predicted probabilities of the occurence of peat is shown below. The map
with the predicted probabilities of the occurence of peat is shown below. The dark grey areas
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indicate the extent of the peat soils outside the study area.
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With the selected cut-off value, the peat category at the prediction points can be determined.
The resulting soil map is shown below.

> predictions$peat <- ifelse(
test = predictions$pred<ptGLGM[[7]],
yes = 0,
no = 1

)
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6 Summary

6.1 Settings

document information
title : Mapping the presence/absence of peat for the northern till plateau with the

Generalized Linear Geostatistical Model
version : 0.1-0
date : April 5, 2012
author : Bas Kempen
based on : Brus et al. (2010)
execution time : 2:01:00
platform : Windows, 7 x64, build 7601, Service Pack 1, x86-64

target variable : Presence/Absence of peat
temporal extent : 2002-01-01 to 2010-12-31

6.2 Session information

• R version 2.14.1 (2011-12-22), x86_64-pc-mingw32
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• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: coda 0.14-6, foreign 0.8-48, geoR 1.7-2, geoRglm 0.9-2, ggcolpairs 0.2.4,
ggplot2 0.9.0, gpclib 1.5-1, gstat 1.0-10, lattice 0.20-0, maptools 0.8-10, MASS 7.3-16,
plyr 1.6, rgdal 0.7-1, rgeos 0.2-3, sp 0.9-91, spacetime 0.5-7, stringr 0.6, xtable 1.7-0,
xts 0.8-2, zoo 1.7-7

• Loaded via a namespace (and not attached): colorspace 1.1-1, dichromat 1.2-4,
digest 0.5.1, memoise 0.1, munsell 0.3, proto 0.3-9.2, RandomFields 2.0.54,
RColorBrewer 1.0-5, reshape2 1.2.1, scales 0.2.0, splancs 2.01-31, tools 2.14.1
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